#P6395. Sequence
Sequence
Problem Description
Let us define a sequence as below
$$\left\{\begin{eqnarray*}
F_1 &=& A \\
F_2 &=& B \\
F_n &=& C\cdot{}F_{n-2}+D\cdot{}F_{n-1}+\left\lfloor\frac{P}{n}\right\rfloor
\end{eqnarray*}\right.$$
Your job is simple, for each task, you should output $F_n$ module $10^9+7$.
Input
The first line has only one integer $T$, indicates the number of tasks.
Then, for the next $T$ lines, each line consists of $6$ integers, $A$ , $B$, $C$, $D$, $P$, $n$.
$1 \leq T \leq 20 \\
0 \leq A, B, C, D \leq 10^9 \\
1 \leq P, n \leq 10^9$
2
3 3 2 1 3 5
3 2 2 2 1 4
36
24