#P3458. Rectangles Too!

Rectangles Too!

Problem Description

A rectangle in the Cartesian plane is speci ed by a pair of coordinates (x1 , y1) and (x2 , y2) indicating its lower-left and upper-right corners, respectively (where x1 ≤ x2 and y1 ≤ y2). Given a pair of rectangles,A = ((xA1 , yA1 ), (xA2 ,yA2 )) and B = ((xB1 , yB1 ), (xB2 , yB2 )), we write A ≤ B (i.e., A "precedes" B), if xA2 < xB1 and yA2 < yB1 :In this problem, you are given a collection of rectangles located in the two-dimension Euclidean plane. Find the length L of the longest sequence of rectangles (A1,A2,…,AL) from this collection such that A1 ≤ A2 ≤ … ≤ AL.

Input

The input fi le will contain multiple test cases. Each test case will begin with a line containing a single integer n (where 1 ≤ n ≤ 100000), indicating the number of input rectangles. The next n lines each contain four integers xi1 ,yi1 ,xi2 ,yi2 (where -1000000 ≤ xi1 ≤ xi2 ≤ 1000000, -1000000 ≤ yi1 ≤ yi2 ≤ 1000000, and 1 ≤ i ≤ n), indicating the lower left and upper right corners of a rectangle. The end-of-file is denoted by asingle line containing the integer 0.

Output

For each input test case, print a single integer indicating the length of the longest chain.

3 1 5 2 8 3 -1 5 4 10 10 20 20 2 2 1 4 5 6 5 8 10 0
2 1